上海赋智金属科技有限公司

主营:冷镦钢,无磁钢,铝合金,不锈钢,高速钢,镍基合金,高温合金,精密合金

工具钢H13线材高速钢光亮丝盘圆

产品信息

产品详细

H13钢材是热作模具钢。执行标准GB/T1299—2000。 统一数字代号A20502;牌号4Cr5MoSiV1;合金工具钢简称合工钢,是在碳工钢的基础上加入合金元素而形成的钢种。

其中合工钢包括:量具刃具用钢、耐冲击工具用钢、冷作模具钢、热作模具钢、无磁模具钢、塑料模具钢。

 

(%)

C:0.32~0.45,

Si:0.80~1.20,

Mn:0.20~0.50,

Cr:4.75~5.50,

Mo:1.10~1.75,

V:0.80~1.20,

p≤0.030,

S≤0.030;

热处理

淬火:790度 -15度预热

1000度(盐浴)或1010度(炉控气氛) -6度加热

保温5~15min空冷

550度 -6度回火退火、热加工;

塑胶模具可处理到HRC48-52度,压铸模具处理到HRC42-46为佳

H13热处理工艺

1.预先热处理 市场上供应的H13钢钢材和模坯,在钢厂都已作好退火热处理,了具有良好的金相组织,适当的硬度,良好的加工性,再进行退火。但制造厂进行改锻后破坏了原来的组织和性能,增加了锻造应力,进行重新退火。

等温球化退火工艺为:860~890℃加热保温2h,降温到740~760℃等温4h,炉冷到500℃左右出炉。

2.淬火及回火 要求韧性好的模具淬火工艺规范:加热温度1020~1050℃,油冷或空冷,硬度54~58HRC;要求热硬性为主的模具淬火工艺规范、加热温度1050~1080℃,油冷,硬度56~58HRC。

回火温度:530~560℃,硬度48~52HRC;回火温度560~580℃;硬度47~49HRC。

回火应进行两次。在500℃回火时,出现回火二次硬化峰,回火硬度,峰值在55HRC左右,但韧性差。因此,回火工艺应避开500℃左右为宜。根据模具的使用需要,在540~620℃范围内回火较好。

淬火加热应进行两次预热(600~650℃,800~850℃),以减少加热过程产生热应力。

3.化学热处理 H13钢若进体渗氮或氮碳共渗可使模具进一步强化,但其氮化温度不应回火温度,以心部强度不降低,从而提高模具的使用寿命。

电渣重容钢,该钢具有高的淬透性和抗热裂能力,该钢含有较高含量的碳和钒,性好,韧性相对有所减弱,具有良好的耐热性,在较高温度时具有较好的强度和硬度,高的性的韧性,优良的综合力学性能和较高的抗回火稳定性。

 

用于制造冲击载荷大的锻模,热挤压模,精锻模;铝、铜及其合金压铸模。

钢中含碳量决定淬火钢的基体硬度,按钢中含碳量与淬火钢硬度的关系曲线可以知道,H13钢的淬火硬度在55HRC左右。对工具钢而言,钢中的碳一部分进入钢的基体中引起固溶强化。另外一部分碳将和合金元素中的碳化物形成元素结合成合金碳化物。对热作模具钢,这种合金碳化物除少量残留的以外,还要求它在回火过程中在淬火马氏体基体上弥散析出产生两次硬化现象。从而由均匀分布的残留合金碳化合物和回火马氏体的组织来决定热作模具钢的性能。由此可见,钢中的含C量不能太低。

 

H13钢是C-Cr-Mo-Si-V型钢,在世界上的应用其普遍,同时各国许多学者对它进行了广泛的研究,并在探究化学成分的改进。

钢的应用广泛和具有优良的特性,主要由钢的化学成分决定的。当然钢中杂质元素降低,有资料表明,当Rm在1550MPa时,材料含硫量由0.005%降到0.003%,会使冲击韧度提高约13J。十分明显,NADCA 207-2003标准就规定:(premium)H13钢含硫量小于0.005%,而级(superior)的应小于0.003%S和0.015%P。

碳:美国AISI H13,UNS T20813,ASTM(新版)的H13和FED -T-570的H13钢的含碳量都规定为(0.32~0.45)%,是所有H13钢中含碳量范围宽的。德国X40CrMoV5-1和1.2344的含碳量为(0.37~0.43)%,含碳量范围较窄,德国DIN17350中还有X38CrMoV5-1的含碳量为(0.36~0.42)%。日本SKD 61的含碳量为(0.32~0.42)%。我国GB/T 1299和YB/T 094中4Cr5MoSiV1和SM 4Cr5MoSiV1的含碳量为(0.32~0.42)%和(0.32~0.45)%,分别与SKD61和AISI H13相同。特别要指出的是:北美压铸协会NADCA 207-90、207-97和207-2003标准中对H13钢的含碳量都规定为(0.37~0.42)%。含5%Cr的H13钢应具有高的韧度,故其含C量应保持在形成少量合金C化物的水平上。

众所周知,钢中增加碳含量将提高钢的强度,对热作模具钢而言,会使高温强度、热态硬度和损性提高,但会导致其韧度的降低。学者在工具钢产品手册文献中将各类H型钢的性能比较很明显证明了这个观点。通常认为导致钢塑性和韧度降低的含碳量界限为0.4%。为此要求人们在钢合金化设计时遵循下述原则:在保持强度前提下要尽可能降低钢的含碳量,有资料已提出:在钢抗拉强度达1550MPa以上时,含C量在0.3%-0.4%为宜。H13钢的强度Rm,有文献介绍为1503.1MPa(46HRC时)和1937.5MPa(51HRC时)。

对要求高强度的热作模具钢,采用的方法是在H13钢成分的基础上提高Mo含量或提高含碳量,这将在后面还会论及,当然韧度和塑性的略为降低是可以预料的。

铬: 铬是合金工具钢中普遍含有的和的合金元素。在美国H型热作模具钢中含Cr量在2%~12%范围。在我国合金工具钢(GB/T1299)的37个钢号中,除8CrSi和9Mn2V外都含有Cr。铬对钢的损性、高温强度、热态硬度、韧度和淬透性都有有利的影响,同时它溶入基体中会钢的耐蚀性能,在H13钢中含Cr和Si会使氧化膜致密来提高钢的舒缓反应性。再则以Cr对0.3C-1Mn钢回火性能的作用来分析,加入﹤6% Cr对提高钢回火抗力是有利的,但未能构成二次硬化;当含Cr﹥6%的钢淬火后在550℃回火会出现二次硬化效应。人们对热作钢模具钢一般选5%铬的加入量。

工具钢中的铬一部分溶入钢中起固溶强化作用,另一部分与碳结合,按含铬量高低以(FeCr)3C、(FeCr)7C3和M23C6形式存在,从而来影响钢的性能。另外还要考虑合金元素的交互作用影响,如当钢中含铬、钼和钒时,Cr>3%[14]时,Cr能阻止V4C3的生成和推迟Mo2C的共格析出,V4C3和Mo2C是提高钢材的高温强度和抗回火性的强化相[14],这种交互作用提高该钢耐热变形性能。

铬溶入钢奥氏体中增加钢的淬透性。Cr﹑Mn﹑Mo﹑Si﹑Ni都与Cr一样是增加钢淬透性的合金元素。人们习惯用淬透性因子加以表征,一般国内现有资料[15]还只应用Grossmann等的资料,后来Moser和Legat[16,22]的进一步工作提出由含C量和奥氏体晶粒度决定基本淬透性直径Dic和合金元素含量确定的淬透性因子(示于图3中)来计算合金钢的理想临界直径Di,也可从下式作近似计算:  Di=Dic×2.21Mn×1.40Si×2.13Cr×3.275Mo×1.47Ni (1)  (1)式中各合金元素以质量百分数表示。由该式,人们对Cr﹑Mn﹑Mo﹑Si和Ni元素影响钢淬透性有相当明确的半定量了解。

Cr对钢共析点的影响,它和Mn大致相似,在约5%的含铬量时,共析点的含C量降到0.5%左右。另外Si﹑W﹑Mo﹑V﹑Ti的加入显著降低共析点含C量。为此可以知道:热作模具钢和高速钢一样属于过共析钢。共析含C量的降低,将增加奥氏体化后组织中和后组织中的合金碳化物含量。

钢中合金C化物的行为与其自身的稳定性有关,实际上,合金C化物的结构、稳定性与相应C化物形成元素的d电子壳层和S电子壳层的电子欠缺程度相关。随着电子欠缺程度下降,金属原子半径随之减小,碳和金属元素的原子半径比rc/rm增加,合金C化物由间隙相向间隙化合物变化,C化物的稳定性减弱,其相应熔化温度和在A中溶解温度降低,其生成自由能的减小,相应的硬度值下降。具有面心立方点阵的VC碳化物,稳定性高,约在900~950℃温度开始溶解,在1100℃以上开始大量溶解(溶解终结温度为1413℃);它在500~700℃回火过程中析出,不易聚集长大,能作为钢中强化相。中等碳化物形成元素W 、Mo形成的M2C和MC 碳化物具有密排和简单六方点阵,它们的稳定性较差些,亦具较高的硬度、熔点和溶解温度,仍可作为在500~650℃范围使用钢的强化相。M23C6(如Cr23C6等)具有复杂立方点阵,稳定性差,结合强度较弱,熔点和溶解温度较低(在1090℃溶入A中),只有在少数耐热钢中经综合合金化后才有较高稳定性(如CrFeMoW)23C6,可作为强化相。具有复杂六方结构的M7C3(如Cr7C3、 Fe4Cr3C3或Fe2Cr5C3)的稳定性差,它和Fe3C类碳化物一样很易溶解和析出,具有较大的聚集长大速度,一般不能作为高温强化相。

上海赋智金属科技有限公司供应H13线材H13圆棒H13盘条H13直条H13光圆H13光亮棒H13剥皮棒H13调质棒H13供应可加工球化退火拉拔精抽,线改棒、冷拉棒、调质棒、剥皮研磨棒、冷拔光亮棒等。欢迎问价咨询

 

联系方式

相关产品

拨打电话 立即询盘